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Abstract

After 19 years the procedure of ”Neuroevolution of Augmenting Topologies”
(NEAT) is still applied and relied upon in modern research. One of the most
recent publications of the original author Kenneth O. Stanley still bootstraps
using the novelty search enhanced NEAT algorithm [2]. This works aims to
articulate each aspect of its methodology very explicitly, shed light on them
from potentially novel perspectives and formalize possible weak spots. A
modern implementation is constructed from insights developed in this work.
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1 Introduction

Evolution has intrigued mankind for decades and more. Entire fields of
science work in order to figure out its processes and to understand the mar-
velous results of these processes, namely all organic lifeforms. Further it
bears huge potential should it be possible to recreate those processes which
result in unprecedented complexity in programmatic nature. This is exactly
what the field of Evolutionary Algorithms is set out to explore. It shines
when tasks are inherently complex and traditional methods unfeasible [23].

The basic model of programmatic evolution involves a population of
solution candidates that are evaluated on a task which determines their so
called fitness. This task is the problem to be solved. After evaluation on the
task only the top-performers are selected to persist, the other candidates
are discarded. Then the population is repopulated with new candidates
created via random changes to the top-performers, which is mutation, and
interpolation between the top-performers, which is crossover.

An example could be a group of programs all tasked to play a video
game and archive the highest score, like in a tournament. Following the
tournament, where only a few of the best are permitted to the next round
as winners, the group is refilled with various slightly altered clones of the
winners, hoping that some of the clones play better than the originals.

The basis of this work is the paper ”Evolving Neural Networks Through
Augmenting Topologies” often referred to as NEAT [28], which applies an
evolutionary algorithm to evolve the topology and parameters of artificial
neural networks. This is called neuroevolution [30].
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1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are widespread among a huge number of
services and research fields [1]. They are capable of approximating how to
perform various tasks via several learning strategies, which alleviates the
operator of the ANN from specifying how the solution to a problem works,
necessary is only to be able to assess the quality of a solution. This work
uses so called reinforcement learning, where agents, i.e. ANNs to be trained,
interact with an environment, i.e. the task. For every action taken in the
environment agents receive a reward which indicates some form of value
the action had in the given situation; the goal is to archive the highest
cumulative reward [14].

Figure 1.1: Exemplaric ANN topology

ANNs are intended to roughly capture a very simple model of how the
brain works, they are made up of neurons also called nodes and connections
between them. The exact composition of nodes and connections of an ANN
is called its topology which has to be defined before it can learn the task it
is hoped to perform. An ANNs topology is usually defined in layers. There
exist one input layer and one output layer with so called hidden layers in
between. These layers are composed of nodes. Each node in each layer is
usually connected to all nodes in the next layer, called ”fully-connected”.
The number of hidden layers and their respective amount of nodes is theo-
retically unconstrained, as well as their connectivity could be anything less
then fully-connected, i.e. connections could be removed as long as each
node still has one feeding into it and one leaving it. Being able to use
many fully-connected layers due to computational resources becoming more
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readily available gave rise to the name ”deep neural network” and ”deep
learning”. A simple ANN topology is shown in figure 1.1 with two hidden
layers each composed of two nodes, all layers fully-connected.

The only known constraints on the topology are the width of the input
and output layers as those are most often implied by the task. Designing the
hidden layers is mostly backed by experiences gained from past attempts,
i.e. knowledge generated by trial end error. More complex components to
build ANNs from have been developed [12, 20], sparse neural networks are
being researched [17] and several works propose automatic procedures to
develop topologies [7] in order to improve on this situation.

1.2 NEAT

The NEAT algorithm is one of those works, providing an alternative to hand-
crafting network topologies by evolving them alongside the learning process.
More recent work has shown that it is also possible to embed domain knowl-
edge into the topology itself [9], which NEAT could take advantage of as
well. There also has been work to compose the mentioned components us-
ing the NEAT method [18] and several recent works build on top of the
NEAT genome and its operators [2, 22, 10]. This highlights the ongoing
interest in the method and reveals that befits could arise by investigating it
further.

This work aims to articulate a strong formalism covering the NEAT
method, which partially is missing in the original work, to add explainability
and predictability to it as well as to simplify some of the original mechanics.
It does so by conducting a detailed analysis of each part of the method to
end up with it being well-reasoned about and understood or discarded.
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2 NEAT in detail

As mentioned before NEAT is a method to evolve ANNs until they are
capable of solving a given task. In order to evolve anything every genetic
algorithm has to choose a representation for the genes and the genome. A
NEAT genome and its encoded ANN can be see in figure 2.1.

Figure 2.1: NEAT genome with corresponding ANN

In NEAT there exist two types on genes: Node genes and connection
genes. The genome is made up of two lists, one for each type of genes. Node
genes consist of an identifier and a specifier which is one of sensor, hidden or
output, depending on the role of the node. All nodes use a steepened sigmoid
activation function. Connection genes consist of a weight and identifiers
describing its origin and destination nodes. Further they carry an ”disabled”
bit and an innovation number.

2.1 SET-NEAT

The genome in this works version of NEAT is represented as a collection of
sets. It is called ”Set-Encoded Topology NEAT” or SET-NEAT for short.

The decision to represent the components of a genome as sets was made
with the intuition that it is supposed to encode a directed, acyclic graph
(DAG). The acyclicity is important to have an unambiguous interpretation
of how the encoded ANN has to be computed. Further it allows for a simple
comparison of genomes via set operations.

The genome is made up of the following structural components:

• I, set of input node genes

• H, set of hidden node genes

• O, set of output node genes

• F ⊆ { (x, y) | x ∈ I ∪ H ∧ y ∈ H ∪ O ∧ x 6= y }, set of feed-forward
connection genes
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Further a function fα : I ∪ H ∪ O −→ f : R −→ R is defined that
maps every node gene to an associated activation function and a function
fω : F −→ R that maps every connection gene to an associated weight. A
full genome thus is represented via the tuple (I,H,O, F, fα, fω).

In order to actually encode a DAG every f ∈ F is interpreted as a
directed edge and no sequence of edges, where the next edge starts where
the previous edge ended, is allowed to exist that traverses any vertex more
than once. The union I ∪H ∪O are the vertices of said DAG.

The DAG invariant has to be preserved under the mutation and crossover
operations and is the most important difference to the original NEAT genome,
which is indeed lacking a definite interpretation on how to be computed as
cycles can arise easily, elaborated further in the following sections. That
severely limits the reproducibility and comparability of experiments as im-
plementation details can have a major impact on their result.

2.2 Innovation is key

The previously mentioned innovation number is key to the ideas and me-
chanics employed by the NEAT algorithm. It is a globally incremented
counter, assigned to connection genes when they first appear. Topologically
identical connection genes appearing in the same generation receive the same
innovation number. This allows to uniquely identify every connection over
the course of evolution, independent of the overall ANN structure encoded
in the genome.

The NEAT paper itself highlights three key mechanisms enabled by
the innovation numbers, namely they allow for a proper comparison and
crossover of genomes, the proper comparison in turn enables grouping genomes
into species separated by genetic differences which results in the capability
to start with minimal structure as new but not yet useful structure can be
protected in its own species.

What constitutes those capabilities in detail will be thoroughly discussed
in the following sections.

2.3 Identity is innovation

The NEAT algorithm works with said innovation numbers. It uses a cache
to assign the same innovation number to connection genes encoding identi-
cal structure, even when arising in different genomes. The cache keeps track
of connection genes and their corresponding innovation numbers. It is only
kept for one generation, i.e. connection genes encoding topologically iden-
tical structure from different generations do not share the same innovation
number.
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This work slightly alters and enhances the cache to get rid of innovation
numbers while still preserving the same functionality inherently encoded
in the identity of the set elements. The initial population is created with
identical I and O sets, the H set is empty in the beginning. From the
definition of F it is clear that connection genes are identical, should they
originate from and are destined to the same node gene. Because the initial
node gene identities are identical across all genomes every connection gene
created from those will express topologically identical structure. So when
the node gene identities introduced over the course of evolution are kept in
sync across all genomes this property will continue to hold.

Algorithm 1: Get identity for new node gene

Input: f ∈ F is connection gene to be split, N is I ∪H ∪O of
mutating genome, C is cache from F to [id], id gen is
function to generate identities

Output: identity of the new node
if f ∈ C then

forall id ∈ C(f) do
if id /∈ N then

return id
end

end
assign new id to result of id gen();
append new id to C(f);
return new id

else
assign new id to result of id gen();
assign C(f) to [new id];
return new id

end

In order to keep identities in sync the the AddNode mutation (further
explained in subsection 2.4.1) is examined, as it is the only way new identi-
ties emerge in the genome. Important for now is that it works by splitting
a connection gene, which introduces two new connection genes and a new
node gene. This procedure needs to be reproducible, i.e. should the iden-
tical connection gene be split in another genomes it has to result in a node
gene with the same identity. To archive this the cache C is a permanent
mapping from F to an ordered list of identities introduced by splitting con-
nection genes. Notice the mapping goes to an ordered list, as the same
connection gene could potentially be split several times due to future mu-
tations targeting it again. When a connection gene f ∈ F is split the cache
is consulted regarding f . Should a list of identities exist, the first in order
that is unknown to the mutating genome is selected. In the case that all
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identities are known a new identity is generated, appended to the list in the
cache and selected. Otherwise, when f is not yet present in the cache, a
new list with a new identity is added to the cache under f and that same
new identity is selected. This method implies that structure is considered
identical independent of the generation it appeared in.

By following algorithm 1 the node gene identities are in sync and should
two connection genes have the same identity they are guaranteed to encode
the same structure without the need for innovation numbers.

2.4 Mutation and Crossover

Mutation and crossover are the two drivers of change in individuals. Mu-
tating a genome changes parts of it randomly while crossing two genomes
over recombines parts of the two into one. The possible mutations and the
crossover operator are explained and analyzed in the following sections.

2.4.1 AddNode Mutation

Originally an existing connection gene is split to add a new node gene, i.e.
it is disabled and two new enabled connection genes with their according
innovation numbers and the new node gene are added to the genome. The
first new connection gene runs from the origin of the split connection gene
to the newly introduced node gene with a connection weight of one. The
second new connection gene originates from the new node gene and runs to
the destination of the split connection gene with its original weight. This is
to limit the initial impact of the new non-linearity.

The ”enable/disable” mechanism causes trouble as it does not maintain
the DAG invariant by producing disconnected structure, elaborated in sub-
section 2.4.5. Due to this issue this work incorporates a suggestion from [27]
of resetting a connection weight to zero when it is split during an AddNode
mutation and removing the ”disable” bit entirely. Following this procedure
the split connection gene might not be relevant for the computed output for
a while but will still express a computable structure by propagating a zero
value.

2.4.2 AddConnection Mutation

In the original algorithm this mutation adds an enabled connection gene
with a random weight and a new innovation number between two nodes
that where not previously connected .

In this work the additional constraint applies that the new connection
gene is not allowed to introduce a circle into the encoded ANN. Further
the innovation number and ”disable” bit are superfluous. That implies, as
stated in the definition of F , that only feed-forward connections can mutate,
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while the original imposes no such restrictions. That restriction will be lifted
in chapter 3.

2.4.3 ChangeWeight Mutation

Changing the weights of a genome originally happens to all weights at once
by a user-defined chance. Should they be mutated each weight is then either
uniformly perturbed or set to a random value.

This work always perturbates a configured percent of all weights of each
genome with perturbations sampled from a normal distribution with a user-
defined σ and zero mean. Further it constrains the possible weights to the
interval [−cap, cap] where cap is user-defined in order to define a comparable
weight difference, elaborated in subsection 2.5.1.

2.4.4 ChangeActivation Mutation

As presented in several other works [26, 9] this work as well allows the
mutation to change activation functions from a configured pool. The pool
is the same as used in [9] without the ”square” function, as it potentially
explodes the propagated values. This shall allow for the potential benefits
gained by encoding domain knowledge into the topology as well as allowing
to build HyperNEAT [29] on top of this work.

2.4.5 Crossover Operator

Originally crossing over two genomes happens by some chance inside the
same species or even between different species. The crossover operator would
line up the connection genes of the two involved genomes by their innova-
tion number. It then operates on the genes that did line up to their same
innovation number counterpart. From those matching genes either would
be inherited by a fair 50/50 chance, effectively resulting in picking one of
the two possible weights for the identical gene. All of the differing struc-
ture is included from the fitter genome. NEAT also shows that by enabling
crossover solutions are found faster.

It is explicitly illustrated that crossover of two equal fitness genomes
results in inheriting all their matching and differing structure into the off-
spring. Despite that procedure being given, NEAT does not provide a mech-
anism to give meaning to that operation, likely resulting in structure violat-
ing the DAG invariant as can be seen in figure 2.2. It displays the minimal
structural setup that does so as the crossover of these two genomes by the
original rules creates a cycle in the ANN (highlighted in red). It then is
missing a definite interpretation on how to be computed.

This work suggests to avoid that problem by always determining a fitter
genome, either the fitter by fitness value, in case of equal fitness the shorter
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Figure 2.2: Crossover resulting in circle

genome as suggested in [25] or else the partner genome. Let’s call that last
case ”the selfless genome”.

Another problem during crossover is caused by the ”disable” bit as it
is inherited by chance in shared connection genes. Thereby the NEAT al-
gorithm can introduce dangling structure in the sense that hidden nodes
might not have incoming or outgoing connections. That also violates the
DAG invariant and has to be prohibited. A minimum example displaying
this behavior can be seen in figure 2.3 where genome 1 is assumed to be
fitter and red indicates a connection is disabled.

It can be concluded that the crossover operator is not operating on struc-
ture directly, it only might alternate details of the shared structure, namely
the connection weights and, in this works version, activation functions. So
applying the crossover operator to two genomes selects the fitter one and
might replace connection weights of shared connections with the correspond-
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Figure 2.3: Crossover resulting in disconnected structure

ing weights of the partner genome, analogously it might replace activation
functions of shared nodes with the corresponding activation functions of the
partner genome. This work always reproduces via crossover but only inside
the same species as being in another species by definition indicates very little
shared structure that could benefit from such a crossover.

2.5 Speciation

Speciation is responsible to divide genomes into species based on a genetic
difference metric. A new species emerges when an individual is not compat-
ible to any existing species. This gives new structure time to develop value
by being protected inside its own niche as survival and reproduction are
determined inside each species. A species s is defined via its first member,
which simultaneously becomes its representative r and a list of individuals
M belonging to that species, as can be seen in equation 2.1.
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s = { (r,M) | r ∈ P ∧M ⊆ P } (2.1)

Inside a species the fittest x percent of the individuals get to reproduce,
where x is a user-defined survival rate. The average fitness of those top-
performers is compared to the other species average fitness of top-performers
and the amount of offspring each species produces is in proportion to the
ratio of those averages.

2.5.1 Measuring genetic difference

The original NEAT paper computes genetic difference (δ) via equation 2.2.

δ = c1 ∗
E

N
+ c2 ∗

D

N
+ c3 ∗W (2.2)

It distinguishes between disjoint and excess genes for the computation,
which are determined by lining up the connection genes by their innova-
tion numbers, like for a crossover. Every gene, iterated backwards from
the genome with the highest innovation number, until the first matching
innovation number is encountered, is called ”excess”. Every following gene
that does not have a matching innovation number is called ”disjoint”. Their
counts are given correspondingly by E and D, while N is defined as the
number of genes in the larger genome. W is the average weight difference
of matching genes. These terms are parameterized by user-defined factors
c1, c2, c3. The difference between disjoint and excess genes only comes into
play when the corresponding terms are parameterized differently. Further
the distinction seems arbitrary, when considering how excess genes can turn
into disjoint genes by just one mutation: In the case of a genome with just
one connection gene G1 : [0] and genome G2 : [0, 1, 2, 3, 4, 5] with several
connection genes all of the genes [1, 2, 3, 4, 5] are considered excess genes.
If now G1 : [0, 6] happens by mutating a new connection gene, all genes
[1, 2, 3, 4, 5] are considered disjoint and [6] is considered excess which might
significantly influence the computed genetic difference between G1 and G2

despite very little actual change in the structure of the genome.
This work dropped the distinction between excess and disjoint genes as

the distinction is not well reasoned about and they are already considered
the same regarding their parametrization in the original experiments and
when it comes to how they are inherited (either both or none).

The ratios expressed in the original paper are also adapted. Instead of
normalizing by the bigger genome, it is normalized by the total amount of
unique connection genes, expressing more precisely the percentage of shared
structure between the two genomes. Also, as in works before, a term to
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express the difference in activation functions of shared structure is incorpo-
rated. Between all shared node genes, the differing activation functions are
counted and expressed as a ratio to the count of shared node genes, giving a
precise percentage of differing activation functions in the shared structure.
Regarding weights the formula is adjusted to express a ratio of the present
difference to the potential maximal difference with regards to the interval
defined by cap as mentioned in 2.4.3. The final difference is expressed by
normalizing the factored terms by their summed factors.

So for two genomes (I1, H1, O1, F1, fα1 , fω1) and (I2, H2, O2, F2, fα2 , fω2)
their genetic difference δ is defined in equation 2.3.

δ =
c1 ∗ δF + c2 ∗ δω + c3 ∗ δα

c1 + c2 + c3

δF =
|F14F2|
|F1 ∪ F2|

δω =

∑
{ diffω(f) | f ∈ F1 ∩ F2 }
|F1 ∩ F2| ∗ 2 ∗ cap

δα =

∑
{ diffα(h) | h ∈ H1 ∩H2 }

|H1 ∩H2|

diffω(f) = |fω1(f)− fω2(f)|

diffα(h) =

{
0, if fα1(h) = fα2(h)

1, otherwise

(2.3)

When considering recurrent ANNs the terms for the feed-forward con-
nections are duplicated accordingly for the recurrent connections, shown in
appendix B.

2.5.2 Initializing and adapting the threshold

The previously defined genetic difference metric is compared to a threshold
in order to determine species membership of the individuals in the popula-
tion. This threshold directly influences the amount of existing species.

It can be hard to predict how many species a given threshold will produce
and certainly there is somewhat of a useful amount of species with regard to
the population size (neither all in one nor everyone in their own). Therefore
the compatibility threshold is automatically initialized and adapted, a form
of adaptation can already be seen in [24]. The user shall configure a desired
amount of species and the algorithm tries to stay as close as possible to the
desired value.
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Initialization of the threshold (see equation 2.4) is performed by deter-
mining the average species size |s|. Then for each initial individual the
difference to every other individual in the population is computed as de-
fined in equation 2.3. Those are listed in differences|P |×|P | below where
δx,1 denotes the least difference and δx,|P | the largest difference with regard

to individual x. The |s|th difference from each comparison is then summed
and finally averaged over the population size |P |.

|s| = |P |
target species count

differences|P |×|P | =

 δ1,1 . . . δ
1,|s| . . . δ1,|P |

... · · ·
... · · ·

...
δ|P |,1 . . . δ|P |,|s| . . . δ|P |,|P |



Tinitial =

∑|P |
p=1 δp,|s|

|P |

(2.4)

The intuition behind this initialization is as follows: It looks at every
individual and figures out what the threshold T would have to be to produce
the average species size should that individual represent a species. Then
those estimates are averaged. This can only be a rough approximation of
the threshold desired to produce the configured amount of species but has
served well enough in the experiments. Further the adaptation mechanism
has been observed to be robust against imprecise initialization.

The adaptation formula is given in equation 2.5 where Tt+1 denotes
the next i.e. adapted threshold value. Tt refers to the current threshold
value and #existingt is the number of existing species, both at timestep t.
#desired is the configured number of desired species.

Tt+1 = Tt ∗

√
#existingt
#desired

(2.5)

It is evaluated at every generation to approach the desired species count.
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2.5.3 Starting minimal

The capability to add new structure with the potential to persist by being
protected in a new species allows the topological setup to be minimal, i.e.
the population is initialized with ANNs that only have the input layer fully-
connected to the output layer with random weights. Starting minimally
leads to the smallest possible solution and to a reduced search space which
is beneficial to the speed of the overall process.

To adapt better to high input domains this work incorporates a sugges-
tion from [27] and therefore allows to start with only a configured percentage
of inputs connected to all outputs as the initial topology. Thereby evolution
may decide which inputs are actually relevant for the task and incorporate
more inputs when appropriate.
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3 Evaluating ANNs of arbitrary

topology

Given some description of a genome introduced in chapter 2 there is the
requirement to somehow compute the function encoded in the genome. It
is a particularly interesting task as the evolutionary process can produce
about any topology imaginable, given sufficient time to do so.

This chapter will elaborate on two distinct approaches, one from the
original NEAT paper and one devised as a part of this work.

3.1 Original Procedure

The evaluation strategy is not discussed in the NEAT paper itself though
[27] points to the source code [25] where the procedure can be examined.

Given the description of nodes and connections inside the ANN the orig-
inal approach to evaluating the encoded ANN is to loop all nodes continu-
ously, checking if any incoming connection provides a value, then activate
the node with that potentially partial input. The loop stops once all outputs
nodes have been activated. A simplified version of the procedure is shown
in algorithm 2, the full code can be seen in the original source [25] or in the
Rust port [3].

Algorithm 2: Original evaluation strategy

Input: g, genome to evaluate, i inputs to encoded ANN
Output: o, values of activated g.O
activate g.I with i;
while g.O not active do

forall node of g.H ∪ g.O do
collect all active inputs;

end
forall node of g.H ∪ g.O do

if node has collected inputs then
activate node with inputs;

end

end

end

It is hypothesised that the output of this process is hard to predict
as changes in network topology can alter the path over which the outputs
receive a signal, potentially short-circuiting the ANN. Further it is hypothe-
sised that the networks response is sensitive to the order in which the nodes
are looped, which would make the output of an ANN depend on implemen-
tation details due to lacking specificity of the procedure.
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This sensitivity to order can be seen in figure 3.1 on the left side, where
two possibilities are displayed how the procedure could turn out. Nodes with
green borders indicate that they are activated, orange connections indicate
an active input. It can be seen clearly that in possibility one the hidden node
does not influence the final output as it is not activated. It is also easily
imaginable that a connection gene connecting the input and output like in
the figure or bridging similar wide distances in the ANN could be added
over the course of evolution, resulting in the hypothesised short-circuiting
of the ANN.

Figure 3.1: Comparison of evaluation strategies

19



3.2 Alternative Procedure

This work constructs a predictable and potentially more efficient represen-
tation before starting evaluation. The idea is to decompose the ANN into
several matrices in order to compute as much as possible in each step and
potentially benefit from SIMD operations or GPUs.

The ANN is decomposed into so called stages where every stage is made
up of a matrix and a vector of activation functions. A stage resembles a
layer in a common ANN. The evaluation of the ANN can then be computed
in the same way ANNs with fully connected layers are. Matrix-multiply the
input with the matrix, apply activation functions and repeat with the newly
computed vector as the input for the next stage/layer.

Algorithm 3: Construct matrix representation from genome

Input: g, genome to be evaluated
Output: S, list of stages and A, list of activation vectors
construct dependency graph D for g.H and g.O;
initialize Av, list of available nodes with g.I;
while D not empty do

initialize list of column vectors (stage) s;
initialize list of activations a;
initialize list of next available nodes Av next;
forall n ∈ D do

if all n.dependencies ∈ Av then
add column vector of corresponding weights to s;
add fα(n) to a;
move n from D to Av next;

end
if some n.dependencies ∈ Av then

add carry vectors for available n.dependencies to s;
add linear activation for each carry vector to a;
add carried n.dependencies to Av next;

end

end
add s to S;
add a to A;
set Av to Av next;

end

In order to accomplish the decomposition a simple basic schema is ap-
plied, see algorithm 3. Initially a dependency graph for every node but
the inputs is computed and all input nodes are marked as ’available’. The
available values are represented as d-dimensional vector Av =

(
a1, . . . , ad

)
.
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The dependency graph is iterated as long as it is not empty and n is the
dependent node being checked at the current iteration. The dependencies
of n are compared to the available nodes and depending on the outcome one
of three actions happens:

• ShouldAv contain every node n depends on a column vector containing
the weights of the relevant inputs is constructed and added to the
current partial matrix s that represents everything computable from
the currently available nodes when complete. That vector is defined
as c in equation 3.1.

c =
(
W(a1), . . . ,W(ad)

)

W(ad) =

{
fω((ad, n)), if fω is defined at (ad, n)

0, otherwise

(3.1)

The associated activation function fα(n) is added to the current acti-
vation vector a that will be applied after the matrix multiplication. n
is then removed from the dependency graph.

• Should Av only contain a subset of nodes n depends on, then for every
node ad of this subset a carry vector in form of the standard unit
vector ed is added as a column to the partial matrix s. The identity
function is added to a as an activation function. Carry vectors and
their activation functions are only added once per stage for every ad.

• Should neither be the case i.e. no value that n depends on is present
nothing is changed.

All computable dependencies and all carried values are marked as avail-
able for the next iteration of the dependency resolution process. Each itera-
tion will produce a matrix s and an activation function vector a and after all
dependencies are resolved the list of matrices and list of activation function
vectors encodes the entire function of the ANN.

An illustration of this procedure can be seen in figure 3.1 on the right
side. The smaller orange node indicates a carry whose necessity has been
discovered by the dependency resolution process. Carries can be imagined
as phantom nodes that do not actually exist in the ANN but are required
to compute it as a matrix. Connections leading into carry nodes (C.1)
always have a weight of one and the nodes themselves always have a linear
activation function. The outgoing connection (C.2) has the original weight
of the connection that was extended by the carry node. With the carry
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node the decomposition into two matrix multiplications becomes possible,
indicated as Stage 1 and Stage 2 in the figure.

Following this procedure, as many values as possible can be computed
per step, in as few steps as possible. A potential problem are unnecessarily
bloated matrices when lots of carries are added. This could be mitigated by
using sparse matrix representations.

3.3 Handling recurrent connections

Recurrent connections allow the ANN to express a dependency on past in-
ternal state. That means every recurrent connection resembles a memory
cell storing a value from the current evaluation to be available in the next.
Some tasks benefit greatly from being able to observe data over time as it
allows to interpret single inputs in context.

3.3.1 Original

The original procedure handles those by buffering the last activation value
of every node and should an incoming connection of a node be marked as
recurrent this buffered value is collected as an input. The buffer is updated
when its corresponding node is activated. The genome only reflects recurrent
connections by that additional marker.

3.3.2 Alternative

To encode recurrent connections in the genome of this work a new set and
a new function are introduced:

• R ⊆ { (x, y) | x ∈ I ∪H ∧ y ∈ H ∪O }, set of recurrent connections

R is similar to F and they can hold elements with matching identity
but their semantics differ. Further elements in R are allowed to express
connection genes that originate from and destine to the same node, i.e.
an encoded node can depend on its own last value. Due to the overlapping
identities the weights for elements of R have to be captured in a new function
fωR and fω is now called fωF . A genome with recurrent connection genes is
thereby defined as (I,H,O, F,R, fα, fωF , fωR).

To compute ANNs with recurrent connections it would be useful to re-
place the recurrent structure with the equivalent feed-forward structure and
then use the evaluation procedure defined in section 3.2. To obtain a feed-
forward only representation of a recurrent genome the operation µ(R, fωR)
is introduced which maps the recurrent structure present in the any genome
to the tuple (Iµ, Oµ, Fµ, fωµ), which denotes the necessary structure to ex-
press the recurrent connections in a feed-forward manner. µ is not specific
to any genome.
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Iall = I ∪ Iµ
Oall = O ∪Oµ
Fall = F ∪ Fµ
fωall = fωF ∪ fωµ

(3.2)

With equation 3.2 a feed-forward representation of a genome then is:

(Iall, H,Oall, Fall, fα, fωall)

The explicit procedure of µ is also called ”unrolling” and is possible due
to the DAG invariant preserved throughout evolution. Unrolling happens
by mapping every recurrent connection gene to a new input node gene, a
new output node gene and two new feed-forward connection genes.

Figure 3.2: Unrolling a recurrent connection

One connection gene runs from the origin of the recurrent connection
gene to the added output node gene with a weight of one. The second
connection gene runs from the added input node gene to the destination of
the recurrent connection gene with its original weight. This can be seen in
figure 3.2 where the orange structure represents the recurrent connection

23



and its unrolled counterpart. Between evaluations the value of the added
output node gene OutputU is transferred to the value of the added input
node gene InputU . Every outward leading connection gene (4.A) i.e. to
OutputU is only created once, should multiple recurrent connection genes
originate from the same node. Only new inward pointing connection genes
(4.B, 4.C, ...) with their according weights are added to express those further
recurrent connection genes originating from the same InputU .

To allow recurrent connection genes to emerge the AddConnection mu-
tation has a configurable chance to mutate the gene into R instead of F .
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4 Demonstrating capabilities with

experiments

In order to observe and assess the behavior and performance of the proposed
changes to the NEAT method a series of experiments are conducted. All ex-
periments are performed with the default configuration stated in appendix
A and the software version of the git-tag ”thesis” unless stated otherwise.
The relevant software is listed in [4] and [3] and written Rust. It is a modern,
compiled language with the focus on compile-time memory safety and per-
formance and an overall good deal in terms of speed, memory consumption
and energy consumption [21].

This chapter will present the data and conclusions from experiments
conducted on three tasks. First the classic XOR task will be solved to
validate all basic capabilities of the method were preserved, just as in the
original NEAT paper. Secondly two tasks from the OpenAI-Gym will be
tackled in order to show the capability to solve more complex problems
as well as to gather data that the two evaluation strategies elaborated in
chapter 3 can be compared on.

Every tasks has a bias input with a constant signal of one added to the
default input as done previously in NEAT to allow the evolution of a bias
term without incorporating it into the nodes themselves.

The following tables present the amount of hidden nodes |H|, feed-
forward connections |F | and recurrent connections |R|, number of genera-
tions as well as the score and the set goal, each averaged over 100 successful
evolutions and their corresponding standard deviation denoted as (± x).

4.1 Verification with XOR

The simplest task to verify basic functionality on is to evolve the XOR
gate as a neural net, the fitness function used is the same as in [28]. The
configuration deviates from the default as the weight perturbation sigma is
increased to 3.0 with a cap of 9.0, the output node has a sigmoid activation
function as in the original NEAT tasks and recurrent connections are turned
off. The difference between the two setups is the evaluation procedure as
explained in chapter 3.

evaluation |H| |F | |R|
original 1.61 (± 0.80) 7.79 (± 1.87) 0
matrix 1.52 (± 0.83) 7.79 (± 1.99) 0

Table 4.1: XOR structure, task configuration
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evaluation #generations score goal

original 10.38 (± 4.16) 15.98 (± 0.03) 15.90
matrix 15.32 (± 7.27) 15.99 (± 0.03) 15.90

Table 4.2: XOR results, task configuration

Table 4.1 and 4.2 shows the results from the experiments run with the
configuration described above. The two experiments are repeated with the
restriction that hidden nodes always use the sigmoid activation function
instead of the full repertoire, the weight mutation rate is at 80%, new nodes
appear with 3% chance, new connections with 5% chance. This configuration
closely resembles the original, results are shown in table 4.3 and 4.4.

evaluation |H| |F | |R|
original 2.92 (± 1.35) 10.72 (± 3.18) 0
matrix 4.90 (± 2.98) 20.05 (± 9.74) 0

Table 4.3: XOR structure, nearly original configuration

evaluation #generations score goal

original 27.35 (± 14.18) 15.97 (± 0.03) 15.90
matrix 142.05 (± 96.99) 15.97 (± 0.03) 15.90

Table 4.4: XOR results, nearly original configuration

The results from the XOR task show that the adapted methodology and
evaluation mechanism still exhibit the basic expected behavior. Both evalu-
ation strategies find solutions with the task configuration in less generations
than the original NEAT XOR verification result which took 32 generations.
It provides both with good results with neglectable differences in struc-
ture (see table 4.1) establishing a solid baseline. This works strategy still
took 1.47x generations more to reach the solution. If now the possibility
to change activation functions, which is available in the task configuration,
is taken away it falls further behind, resulting in a 1.68x increase in |H|
and 1.87x increase in |F |. Apart from bloat it takes 5.19x more generations
to solve the task. This hints at some major differences between the two
evaluation strategies, possibly a bias of the original towards the task or a
major benefit this works strategy has from switching activation functions.
With the nearly original configuration the original strategy in this work is
still slightly better than in the original work indicating a potential overall
increase in evolution performance.
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4.2 OpenAI-Gym

Many papers in the field of GAs and neuroevolution bring their own problem
with the solution or method they are proposing. Due to this circumstance
it is not straight forward how those methods can be compared. This work
tries to validate itself by testing its method against a collection of known
tasks, namely the OpenAI-Gym. It comes with several types of tasks with
varying difficulties. A task is considered solved when the average score of
an individual over 100 simulations is equal or higher than the set goal.

When training not just one ANN but evaluating an entire population of
them a crucial factor regarding time and score accuracy is how many simu-
lation an ANN is evaluated on, as those are randomized to some degree. A
bad or good score from just one simulation has difficulties representing the
abilities of the ANN when confronted with the entire spectrum of the envi-
ronment that comes from the 100 consecutive simulations used to validate a
possible solution. Increasing the number of simulations better assesses the
overall capability of the individual ANN to handle the task but comes at
significant computational cost.

4.2.1 Classic control

Classic control tasks are ”Control theory problems from the classic RL liter-
ature” [6]. The following task is evaluated in four scenarios: Twice with the
original evaluation strategy, each time with one and two simulations respec-
tively. The same happens with this works ”matrix” evaluation strategy, the
two simulations are denoted with the suffix ”+1” in the following tables.

CartPole-v1

CartPole-v1 [5] is about balancing a pole on a cart which can slide along a
fixed horizontal rail. It can move with fixed speed in either direction. The
provided inputs are the carts position and velocity along its variable axis.
Further the angle and angular velocity of the pole are available information.
Table 4.5 shows the evolved structure of the solution, table 4.6 shows the
generations passed and the archived score.

evaluation |H| |F | |R|
original 1.55 (± 0.99) 12.71 (± 4.13) 1.70 (± 1.49)

original+1 2.17 (± 1.47) 11.98 (± 4.26) 1.26 (± 1.19)
matrix 1.38 (± 1.02) 9.59 (± 3.45) 0.5 (± 0.75)

matrix+1 1.73 (± 1.09) 10.87 (± 3.68) 0.74 (± 0.84)

Table 4.5: CartPole-v1 structure, default configuration
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evaluation #generations score goal

original 120.15 (± 101.40) 266.71 (± 59.22) 195.00
original+1 70.83 (± 81.97) 271.07 (± 64.96) 195.00

matrix 22.63 (± 45.17) 286.03 (± 63.67) 195.00
matrix+1 27.59 (± 38.11) 287.77 (± 69.65) 195.00

Table 4.6: CartPole-v1 results, default configuration

Both strategies in both setups archive and outperform the score required
to solve this relatively simple task without major differences between the
final scores or structure. A remarkable difference unveils itself when the
amount of generation passed until a solution was discovered is examined.
The original evaluation strategy on average takes more than 5.31x the gen-
erations to reach a solution while at the same time deviating more than
2.24x from that average compared to this works matrix evaluation strat-
egy, portraying it as less reliable and more time consuming. Its reliability
increased when taking two simulations into account decreasing the amount
of generation passed by 0.59x and the corresponding standard deviation by
0.81x. Increasing the amount of simulations on this works strategy resulted
in an 1.22x increase in average generations passed and an 0.84x decrease in
standard deviation, displaying increased consistency at a higher base cost.
It did not benefit greatly from raising the amount of simulations on this
specific task.

Notably the amount of species over all computed evolutions with varying
amounts of generations passed, stayed very close to the desired goal of 10
species with on average 9.08 (± 2.42) species per generation even though it
was initialized in a way that produced 24.44 species on average in the first
generation.

4.2.2 Box2D

The Box2D type of tasks involves controlling a robot in various 2D environ-
ments with simulated physics.

LunarLanderContinuous-v2

The LunarLanderContinuous-v2 [16] environment tasks the ANN to learn
how to land a moon lander as central as possible without crashing it into the
ground. The task is considered solved when 200 or more points are scored
on average over 100 simulation runs. The state vector fed into the ANN is
composed of eight sensor values plus one bias input that is always one. The
outputs are two floats in the range [-1.0, 1.0] indicating the activation of a
main engine (upwards thrust) and orientation engines (nudging left/right)
respectively.
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The experiments were conducted with the chance to add a new node
decreased to 0.5%. The weight cap was decreased to 1.0 and the sigma for
sampling the weight perturbations was decreased to 0.1. Due to the smaller
changes in weight the factor for weight difference was raised to 3.0, the
factor for connection difference was raised to 2.0 as new nodes are added
less often. The score per ANN was determined over 3 simulations. This
configuration produced successful consecutive runs in smaller experiments,
less simulations had fairly unstable fitness trajectories.

Table 4.7 reports on the developed structure of 100 experiments on av-
erage with its standard deviation. Interestingly the solutions rarely incor-
porate hidden nodes, indicating that the initial topology is almost sufficient
to solve the task once the weights are tuned correctly. Almost all solutions
incorporate a recurrent connection which indicates that this task does gain
the previously discussed benefit from being able to observe data over time.

evaluation |H| |F | |R|
original 0.08 (± 0.27) 18.61 (± 2.14) 1.06 (± 0.88)
matrix 0.09 (± 0.32) 18.66 (± 2.33) 1.15 (± 1.04)

Table 4.7: LunarLanderContinuous-v2 structure, task configuration

evaluation #generations score goal

original 31.4 (± 9.38) 219.99 (± 14.76) 200.00
matrix 31.62 (± 10.37) 219.18 (± 15.95) 200.00

Table 4.8: LunarLanderContinuous-v2 results, task configuration

Table 4.8 reports the generation and score average over the 100 experi-
ments with its standard deviation. It demonstrates that both methods are
capable of finding solutions consistently on a more complex task, seemingly
without significant differences in their respective results. But when it is
recalled that the solutions are mostly absent of hidden nodes, it becomes
apparent that the instabilities of the original evaluation strategy do not ap-
pear in a simple fully-connected network without hidden layers. This can
also be derived from the examples in figure 3.1 and examination of algorithm
2. Regarding the evolved topology, which in this case is the initial topology,
both strategies should be expected to behave identical which is what the
experimental results show.
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4.3 Final Remarks

The experiments proved that the basic capabilities of the NEAT method
were preserved and even showed success regarding the species count mainte-
nance while being backed by exact formalization. Further the experimental
results regarding the developed ”matrix” evaluation strategy give evidence
of it being more reliable. This is likely due to the underspecification in the
original evaluation strategy which leads to the hypothesised inconsistencies
discussed in chapter 3. This potentially slows down the overall evolutionary
progress by mutations introducing destructive changes to already developed
functionality.

Better individual results for some tasks could potentially be archived by
experimenting more with the configuration of the algorithm as well as the
training regime i.e. number of simulations per individual, normalization of
inputs and interpretation of outputs. Tinkering further with the experiments
to archive better scores and running other experiments is interesting and
necessary but out of the scope of this work and should be picked up again
in future work.
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5 NEAT and beyond

Since the invention of the NEAT method roughly 19 years have passed. To
acknowledge the progress made in those years and to put this work into
perspective some ideas and research in the field will be discussed here.

5.1 Novelty Search

Novelty search [15] has been a new approach that works almost as a drop-in
replacement for a fitness metric. Every individual is assigned a behavior
characterization represented as some vector instead of a fitness value. Then
the sparseness of those vectors is computed as the average distance to their
k-nearest neighbors. This sparseness is interpreted as a novelty score. The
more sparse a behavior is the less that exact or similar behaviors have been
expressed by other individuals, i.e. it is novel. If the novelty score of any
individual exceeds a certain threshold its behavior vector is added to an
archive which is always taken into account when computing the sparseness.
That drives a dynamic where individuals are pushed to explore the behavior
space ever more until they enter the intersection of the behavior space and
the solution space. The assumption behind this approach is that the novelty
gradient enters areas that the fitness gradient would not have explored.
Also much of the search space (weights and topological changes) potentially
collapses into similar points in behavior space thereby greatly reducing the
total space to be explored. An apparent problem is that the behavior space
might still be very large and exploring it without any sense of direction
but ”somewhere new” deems unfeasible, effectively resulting in a random
exploration. This challenge has been approached from various directions
and a empirical comparison of those approaches can be found in [10].

5.2 Converging vs. Diverging Search

Novelty search advanced the field with respect to so called ”deceptive” en-
vironments, where strictly following the fitness gradient inevitably leads to
dead ends. It shed light on and offered an approach to overcome this funda-
mental limitation. It inspired further investigation leading up to the incep-
tion of Quality Diversity (QD) algorithms [22]. QD algorithms are bound
to a behavior descriptor and aim for several, diverse, high quality solutions
at the same time, i.e. they diverge. This is analogous to natural evolution
where a vast variety of organisms exists with an equally vast amount of
different approaches to continuing there existence. It is likely that multiple
attractors exist in most search spaces and a traditional genetic algorithm
guided by a fitness metric alone is likely to stick to the first one found i.e
converge quickly. Potentially even a different attractor is converged to each
time the algorithm is run. Conversely QD algorithms try to illuminate all
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attractors by uniformly covering the behavior space. Notably they also di-
verge from the assumption that evolution works as a black box optimization.
They try to explore other crucial aspects of evolution such as diversity and
creativity in the sense that various approaches yield different but working
solutions. One such algorithms is MAP-Elites [19]. It articulates a sim-
ple mechanism to allow for quality and diversity without those conflicting
each other, i.e. they act orthogonally. First the behavior space is segregated
into even chunks. Then individuals are placed into those chunks according to
their behavior characterization. Diversity is preserved by permanently keep-
ing one individual per chunk (should it have been filled by evolution) and
quality is improved by replacing individuals inside chunks should a better
performing one be placed in the same chunk. The chunks form the popula-
tion and the archive at the same time and individuals are randomly selected
for reproduction. MAP-Elites makes no assumptions about the individuals.

The goal of continuing ones lineage is very implicit in natural evolution
and it is questionable if it is the actual goal or rather just a precondition
for playing the game of life. A similar thought is picked up by the Minimal
Criterion Coevolution (MCC) [2] algorithm. It removes the explicit behavior
characterization mechanism by designing the selective pressure and genetic
drift in a way that drives organisms towards desired capabilities and fos-
ters diversity by resource limitation. It does so by evolving two populations
at the same time, solvers and problems alike. The solvers mutate to im-
prove their problem solving capabilities, the problems mutate to become
more difficult and complex. Those two populations are coupled via a mini-
mal criterion, namely each solver has to solve at least one of any problems,
conversely each problem has to be solved by at least one solver. Resource
limitation means one problem can only be used a limited amount of times
to satisfy a solvers minimal criterion, i.e. not all solvers can solve the easiest
problem and continue to exist. This approach is one that incorporates so
called open-endedness of the search into its process. As before no assump-
tions about the individuals are made.

5.3 And now this

Evolution is separable into two parts, namely the representation part span-
ning the genome and its associated operations (mutations and crossover)
and the mechanism part which is responsible for the evaluation and selec-
tion processes. This work put its focus on strictly formalizing the genome,
computations derived from it and its interpretation as an ANN. Since the
genome is the representation aspect, the formalism developed in this work
can be mixed and matched with the selection mechanisms of other evolu-
tionary algorithms while improving reliability and explainability. Potential
candidates for this are the mentioned MCC and MAP-Elites algorithms.
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6 Concluding thoughts and future work

Being unsatisfied by the apparent arbitrariness of ANN topologies and then
inspired by the idea of evolving the topology alongside the learning pro-
cess this work came to be. During research it was realized that significant
progress in the field of neuroevolution had been made since the publication
of ”Evolving Neural Networks through Augmenting Topologies” proposing
the NEAT method in 2002. Catching up and not getting lost or distracted
along the way became a major focus. Some of the research results inspired
chapter 5 and the following conclusions and proposed ideas.

First and foremost evolution is a deceivingly simple mechanic. In terms
of Manollis Kellis: ”[...] biology is not intelligent, it’s just ruthless selection,
random mutation.” [8], again highlighting the two parts of evolution. Each
part, the genome with mutations and crossover and the selection mecha-
nism, can be made arbitrarily complex to model observed and desired be-
haviors more closely. This task of capturing the evolutionary dynamics
encountered in nature is a key part of designing evolutionary algorithms.
Current research seems to shifts the focus towards Quality Diversity and
open-endedness, as mentioned in chapter 5.

Another major insight gained is that evolving topologies does not alle-
viate the operator of the ANN from a lot of experimentation as it shifts
the complexity of topological choices into the complexity of the hyper-
parameters. A partial goal of this works NEAT implementation became
to reduce the hyper-parameter surface which succeeded in some areas, no-
tably the automated speciation threshold, but not all. A significant amount
of time was spend experimenting then improving the code as well as the
configuration triggering new experimentation, resulting in a feedback loop.
Some of the discussed shortcomings of the original work were only discov-
ered as a result of this process. The software finally used and presented on
Github [4, 3] is thereby the result of several iterations and improvements.

Self-organized critically (SOC) was encountered during research and
could potentially become a new building block in evolutionary algorithms
and more so in neuroevolution as it seems inherently linked with neural sys-
tems [11]. It could serve as a selection or mutation mechanism of sorts as it
has been employed to generate search patterns in optimization problems be-
fore [13]. This is particularly interesting due to the lack of parametrization
when dealing with SOC as opposed to heavily parameterized custom mech-
anisms. Another perspective could be to investigate existing EAs and probe
their results for SOC-like behavior or to design mutations and/or selective
pressure to have the evolved neural structures exhibit SOC-like behavior.

The observed differences of the activation strategies is another direction
that could be explored in more detail, as strategies potentially lend them-
selves better towards some type of task indicated by the XOR experiment.
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A Default parametrization

category parameter value

setup

seed 42
population size 100

input dimension
task-
dependent

output dimension
task-
dependent

connected input percent 1.0
add to archive chance 0.0

novelty nearest neighbors 0

mutation

new node chance 0.05
new connection chance 0.1

connection is recurrent chance 0.1
change activation function chance 0.05

weight perturbation percent 0.5
weight perturbation std dev 1.0

weight perturbation cap 3.0

activation output nodes Tanh

activations hidden nodes

Linear,
Sigmoid,
Tanh,
ReLu,
Gaussian,
Step, Sine,
Cosine,
Inverse,
Absolute

reproduction

survival rate 0.2
generations until stale 10

elitism species 1
elitism individuals 0

speciation

target species count 10
factor weights 1.0
factor genes 1.0

factor activations 1.0
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B Compatibility formula with recurrent connec-
tions

Compatibility of genomes

(I1, H1, O1, F1, R1, fα1 , fωF1 , fωR1
)

and

(I2, H2, O2, F2, R2, fα2 , fωF2 , fωR2
)

δ =
c1 ∗ (δF + δR) + c2 ∗ (δωF + δωR) + c3 ∗ δα

c1 + c2 + c3

δF =
|F14F2|
|F1 ∪ F2|

δR =
|R14R2|
|R1 ∪R2|

δωF =

∑
{ diffωF (f) | f ∈ F1 ∩ F2 }
|F1 ∩ F2| ∗ 6 ∗ σ

δωR =

∑
{ diffωR(r) | r ∈ R1 ∩R2 }
|R1 ∩R2| ∗ 6 ∗ σ

δα =

∑
{ diffα(h) | h ∈ H1 ∩H2 }

|H1 ∩H2|

diffωF (f) = |fωF1 (f)− fωF2 (f)|

diffωR(r) = |fωR1
(r)− fωR2

(r)|

diffα(h) =

{
0, if fα1(h) = fα2(h)

1, otherwise

(1)
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